
Dataset management 
Version 0.02 

David Adams 

January 18, 2005 

Introduction 
The ATLAS and other LHC experiments will annually produce millions of data files requiring petabytes of 
storage. Most of the volume will occupied by raw and first-stage reconstruction files that are not typically 
of interest to the average physicist, but a significant fraction of the volume and a large fraction of the files 
will be devoted to data that are used as input to end user analysis. Means for managing and accessing theses 
files individually can be provided by a file management system (FMS) as discussed in an earlier note [1]. 
Here we address the issue of collective data management, i.e. means for users to manage, access and track 
the provenance of collections of files without carrying around long lists of file references and using such 
lists in direct interaction with the FMS. Instead, interaction is with a dataset management system (DSMS) 
that can catalog collective properties and avoid frequently repeating a query for each entry in a list of file 
references. 

Our discussion is carried out in the context of the ATLAS experiment to provide concrete examples but 
applies equally well to other LHC experiments, other HEP experiments and other systems wishing to 
provide a coherent view of a large number of files. This is especially true in those cases where the data is 
event-oriented, i.e. made up of a large number of data blocks, here called events, where each is processed in 
a similar manner to construct a data collection. 

For simplicity, the discussion assumes data residing in files, but the ideas apply equally well to other types 
of data e.g. to that residing in relational database tables or an object management system. 

Datasets 
We use the word dataset to describe a collection of data typically but not necessarily held in a collection of 
files. The properties of datasets and their useful operations are described in another note [2]. The relevant 
properties here are identity, location, content, composition, provenance and lifetime. Identity means that 
each dataset is labeled with a unique identifier. Location refers to the list of files (ot other entities) holding 
the data in the dataset. Content is summarized by a label describing the type of data, e.g. ESD, AOD-
electron or AOD-muon. Composition implies that datasets may be constructed from other datasets and 
specifically refers to the list of constituent datasets that comprise a composite dataset. We assume a simple 
transformation model where a new dataset is produced by transformation of an existing dataset: the 
provenance of the new dataset is specified by the identities of the transformation and the original dataset. 
There is also the possibility to form a dataset by simple merging of existing datasets; in this case the 
provenance is specified by the identities of the merged datasets. In either case, the datasets referenced in the 
provenance are called parents. Lifetime implies there are conditions where a dataset can cease to exist and 
resources such as the space used to hold its files or entries in database tables can be recovered. 

There are many facets to the existence of a dataset. A summary of its intrinsic properties is carried in the 
dataset description which is normally stored in a dataset repository. These include the identity, location, 
content, composition and the parent dataset. These and other properties may be recorded in catalogs 
indexed by the dataset identifier. 

A concrete dataset is one which references data, here in stored in physical or logical files. The files are 
specified by references such as those described in the FMS note. We also allow for the existence of virtual 
datasets that do not have such data references. These may be mapped to concrete datasets with a dataset 
replica catalog (DRC). A virtual dataset may also be used to record the prescription for creating a concrete 
dataset. 



Dataset management 
A dataset may be formed by any selection of data from any combination of files and hence the number of 
datasets is likely to be large, possibly much larger than the number of files. The role of the dataset 
management system (DSMS) is to provide managers and ordinary users with a comprehensible view of the 
collection of datasets. Obviously, users must be able to create datasets and record their intrinsic and other 
properties. The DSMS must also enable users to select datasets of interest, to access the data associated 
with a dataset and track the provenance of datasets. Users must also be able to control the lifetime of 
datasets, i.e. delete them when they are longer of interest. Finally, if (as we assume) the system is to 
support virtual datasets, then the DSMS is responsible for cataloging them and their associations with 
concrete datasets. 

Dataset selection 
A user wishing to examine or process a dataset must provide its ID or name to access its properties. This 
name or ID may is typically selected from a dataset selection catalog (DSC), sometimes called a metadata 
catalog. These catalogs associate dataset properties with a dataset name and ID and users can make queries 
on these properties to select a dataset of interest. 

Data access 
As previously indicated, for the datasets considered here, the associated data are found in files. The DSMS 
has the responsibility of determining the list of files associated with a datasets and the FMS has the ultimate 
responsibility of enabling users to access those files. However, in that the files for a dataset are often 
produced at a single site, accessed a single site and collectively moved between sites, it is natural for the 
DSMS to track the sites where datasets (more precisely their data) are located and make this information 
available to data managers, ordinary users and workload management systems. 

Provenance 
We require the DSMS record the provenance of any dataset, i.e. the identities of the transformation and 
parent dataset or the identities of the merged datasets. The DSMS provides access to the provenance chain, 
i.e. to all ancestor datasets and associated transformations. The DSMS should ensure the integrity of this 
chain—the removal of an intermediate dataset from the DSMS should not remove all traces but leave 
information sufficient to understand the origin of datasets appearing later in the chain. 

Lifetime 
Rather than simply allowing all datasets to persist indefinitely in the DSMS, we require some mechanism 
by which they can be removed or at least marked as such. This is important to recover resources such as 
storage space for data files and to reduce clutter in catalog tables. Analysis activities naturally produce a 
large number of datasets that naturally short-lived (e.g. partial results) and it is very convenient to use the 
same DSMS to manage these as is used for the long-lived datasets characteristic of production activities. 
This problem is complicated because multiple users may express interest in a dataset and because 
associations between datasets may propagate this interest from one dataset to many others. 

Virtual data 
We assume a virtual data model based on virtual datasets rather than virtual files as in Chimera [3]. If a 
transformation is run twice with the same input, the output files and datasets are assigned different 
identities in both cases and the produced concrete datasets may be mapped to the same virtual dataset. Or 
the data contained in the files for a dataset may be copied into a new set of files used as the basis for an 
equivalent dataset and these two datasets similarly mapped to a virtual dataset. These virtual datasets have 
all the properties of concrete datasets except, by definition, they have no location information. The DSMS 
is required to record these properties and the concrete-to-virtual mappings. 

 2



 3

Lifetime management 
We assume a claim-based lifetime management strategy for datasets similar to that used for files in the 
FMS [2]. A dataset remains active as long as there is at least one active claim on that dataset. When no 
claims remain, a dataset is inactive and may be deleted. As in the file case, these claims may be external 
(also called explicit) and held by a user or data manager, or, unlike the file case, these claims may be 
internal (aka implicit), implied by association with another claimed dataset. These associations may arise 
from composition, provenance or concrete-virtual mapping with their effect depending on this nature. 

External claims may be released at any time and have an expiration time at which they are automatically 
released. The claimer may reset this value at any time as long as the corresponding dataset remains active. 
Internal claims have the same lifetime as the external claim that invokes them. 

Claim attributes 
A dataset claim carries attributes specifying the implied claims made on associated datasets. We identify 
three important attributes: constituent claiming, ancestor claiming and replica claiming. Others are possible. 

A dataset claim with constituent claiming implicitly claims the constituents of that dataset. The attribute 
has a value that indicates whether it extends to implicit claims, i.e. whether claimed datasets also claim 
their constituents. This might be restricted by a number of levels. We say a claim has complete constituent 
claiming if it extends to all implied claims. 

A dataset with ancestor claiming implicitly claims the datasets in it provenance. Again this may be limited 
to the immediate parent (or parents) or may extend back multiple generations. A complete ancestor claim 
extends along the full provenance chain leading up to the claimed dataset. 

A claim on a virtual dataset may include replica claiming that extends the claim to one or more concrete 
replicas. The motivation for this attribute is to ensure that one or more replicas exist for the lifetime of the 
virtual dataset. The attribute could indicate how many replicas should exist and perhaps a policy for which 
ones are preferred. It is possible that the implied claims are conditional; a replica dataset is claimed only if 
there are no other replicas for the claimed virtual dataset. 

ATLAS claims 
Here we discuss how the above claim attributes might apply to ATLAS. We assume the lowest level 
datasets will hold file references and claims to those files and so full constituent claiming is required to 
ensure that the data for a dataset remains accessible. Ancestor claiming might be useful in some cases, e.g. 
to ensure that the parent ESD remains available for an AOD dataset, but there may be cases where we 
would allow the corresponding ESD to be deleted. It is not clear whether replica claiming is worth the 
trouble of implementing a conditional claims mechanism. This depends on whether and how virtual 
datasets are used in ATLAS. 

Use cases 
We identify some use cases for the DSMS: 

1. A processing system acting on behalf of a user performs a transformation, records the new dataset 
and its provenance in the DSMS and claims the dataset for that user. 

2. The user extends the lifetime of that claim 
3. The user inserts the dataset into a DSC and assigns attributes. 
4. Another user selects the dataset using implicit and assigned attributes. 
5. A processing system given this dataset as input finds sites where the dataset is present, i.e. its files 

are available. 
6. A processing system or data manager asks to move a dataset to a site. 
7. The input in the previous two cases is a virtual dataset. 



 4

Interface 
The detailed interface is left to a later version of this document. At the VO level, we expect something like 
the dataset repository, selection catalog (DSC) and replica catalog (DRC). The interface must allow users to 
determine the sites where a dataset is available (i.e. its files are present) and must provide means to make a 
dataset available at a site. It is not clear whether this should b e accomplished by interacting with a VO- or 
site-based service. 

Implementation 
The interface should be specified before going to much further with implementation. DIAL [3] provides 
classes describing the dataset repository, DSC and DRC and rudimentary implementations based on 
MySQL tables. Lifetime management and data placement have not yet been addressed. 

The DSMS is distinct from the FMS to break the problem into more manageable pieces. Current grid 
middleware development projects address file management and so are most likely to be receptive to the 
FMS ideas and to deliver mature services with a similar level of functionality. ATLAS and other VO’s will 
likely have to provide much of the implementation of the DSMS at least in the short term. 

Conclusions 
Concepts and use cases for collective data management have been provided along with rudimentary 
discussion of interface and implementation. The unit of management is the dataset introduced in an earlier 
note. The dataset management system (DSMS) described here makes use of the file management system 
(FMS) described elsewhere. The DSMS makes use of a claims mechanism for lifetime management similar 
to that used in the FMS. 

References 
1. “File management on the grid”, D. Adams, http://www.usatlas.bnl.gov/ADA/docs/fms.pdf. 
2. “Datasets for the Grid”, D. Adams, http://www.usatlas.bnl.gov/~dladams/dataset/docs/griddataset.pdf. 
3. The DIAL home page is http://www.usatlas.bnl.gov/~dladams/dial. 

http://www.usatlas.bnl.gov/ADA/docs/fms.pdf
http://www.usatlas.bnl.gov/~dladams/dataset/docs/griddataset.pdf
http://www.usatlas.bnl.gov/~dladams/dial

	Dataset management
	Introduction
	Datasets
	Dataset management
	Dataset selection
	Data access
	Provenance
	Lifetime
	Virtual data

	Lifetime management
	Claim attributes
	ATLAS claims

	Use cases
	Interface
	Implementation
	Conclusions
	References


